Search results for "Tropomyosin receptor kinase C"

showing 7 items of 7 documents

NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue

2021

Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human re…

0301 basic medicineMaleAgingSympathetic Nervous SystemEndocrinology Diabetes and Metabolismbeta-adrenoceptorsAdipose tissueWhite adipose tissueTropomyosin receptor kinase Clcsh:Diseases of the endocrine glands. Clinical endocrinologychemistry.chemical_compound0302 clinical medicineEndocrinologyAdipocyteBrown adipose tissueUncoupling Protein 1Original ResearchbiologyChemistryCell Differentiationtropomyosin-related kinase receptor CCell biologymedicine.anatomical_structureAdipose Tissueembryonic structuresFemaleSignal Transductionanimal structuresadipocytesLipolysisUCP-1Mice TransgenicNeurotrophin-303 medical and health scienceswhite adipose tissueneurotrophin-3Receptors Adrenergic betamedicineLipolysisAnimalsHumansReceptor trkCRats WistarAgedCell Sizelcsh:RC648-665Body Weightbrown adipose tissue030104 developmental biologybiology.proteinBlood VesselsThermogenesis030217 neurology & neurosurgeryBiomarkersFrontiers in Endocrinology
researchProduct

NT3/TrkC pathway modulates the expression of UCP-1 and adipocyte size in human and murine adipose tissue

2020

ABSTRACTNT3, through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (specially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 was present in human retroperitoneal AT and decreas…

Genetically modified mousechemistry.chemical_compoundanimal structureschemistryAdipocyteembryonic structuresLipolysisAdipose tissueReceptorThermogenesisTropomyosin receptor kinase CNeural stem cellCell biology
researchProduct

Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression.

2001

Previous work suggested qualitatively different effects of neurotrophin 3 (NT-3) in cochlear innervation patterning in different null mutants. We now show that all NT-3 null mutants have a similar phenotype and lose all neurons in the basal turn of the cochlea. To understand these longitudinal deficits in neurotrophin mutants, we have compared the development of the deficit in the NT-3 mutant to the spatial–temporal expression patterns of brain-derived neurotrophic factor (BDNF) and NT-3, using lacZ reporters in each gene and with expression of the specific neurotrophin receptors, trkB and trkC. In the NT-3 mutant, almost normal numbers of spiral ganglion neurons form, but fiber outgrowth t…

HeterozygoteCell SurvivalCell CountNeurotrophin-3Tropomyosin receptor kinase BTropomyosin receptor kinase CArticleMiceNeurotrophin 3Neurotrophic factorsGenes ReportermedicineAnimalsReceptor trkBReceptor trkCNeurons AfferentCochleaSpiral ganglionBrain-derived neurotrophic factorAfferent PathwaysbiologyGeneral NeuroscienceBrain-Derived Neurotrophic FactorHomozygoteGene Expression Regulation DevelopmentalImmunohistochemistryMice Mutant StrainsCochleamedicine.anatomical_structurePhenotypenervous systemAnimals NewbornLac OperonMutationbiology.proteinSpiral GanglionNeuroscienceNeurotrophin
researchProduct

Ligand-induced phosphorylation/dephosphorylation of the endogenous bradykinin B2 receptor from human fibroblasts.

1996

We have studied the ligand-induced phosphorylation/dephosphorylation of the bradykinin B2 receptor endogenously expressed in human HF-15 fibroblasts. An antiserum (AS346) to a synthetic peptide (CRS36), derived from the extreme carboxyl terminus of the human B2 receptor, precipitated the receptor from solubilized membranes of HF-15 cells that had been labeled with [32P]orthophosphate. A low basal level of B2 receptor phosphorylation was found in the absence of a ligand. Stimulation of the cells with the B2 receptor agonists bradykinin, [Lys0,Hyp3]bradykinin, kallidin, and T-kinin resulted in a rapid and efficient phosphorylation of the receptor. The B2 receptor antagonist HOE140 and the B1 …

Receptor Bradykinin B2Receptors BradykininCell BiologyBiologyFibroblastsInterleukin-13 receptorBradykininBiochemistryTropomyosin receptor kinase CMolecular biologyPhosphoric Monoester HydrolasesCell LineEstrogen-related receptor alphaCOS CellsEnzyme-linked receptorConcanavalin AAnimalsHumansProtease-activated receptorProtein phosphorylationElectrophoresis Polyacrylamide GelBradykinin receptorPhosphorylationMolecular BiologyProtease-activated receptor 2The Journal of biological chemistry
researchProduct

The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor.

1992

Fetuins are among the major plasma proteins, yet their biological role has remained elusive. Here we report the molecular cloning of rat fetuin and the sequence analysis of a full-length clone, RF619 of 1456 bp with an open reading frame of 1056 bp encoding 352 amino acid residues. The coding part of RF619 was identical with the cDNA sequence of the natural inhibitor of the insulin receptor tyrosine kinase from rat (pp63) except for four substitutions and a single base insertion causing divergence of the predicted protein sequences. Partial amino acid sequences of rat plasma fetuin were in agreement with the predictions based on the RF619 cDNA. Purified rat fetuin inhibited the insulin rece…

Sequence analysisMolecular Sequence DataBiochemistryTropomyosin receptor kinase CReceptor tyrosine kinaseSubstrate SpecificityComplementary DNASequence Homology Nucleic AcidAnimalsAmino Acid SequencePhosphorylationchemistry.chemical_classificationbiologyBase SequenceDNAProtein-Tyrosine KinasesFetuinMolecular biologyReceptor InsulinAmino acidRatsInsulin receptorBiochemistrychemistryROR1biology.proteinalpha-FetoproteinsEuropean journal of biochemistry
researchProduct

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.

2004

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by T…

Time FactorsGreen Fluorescent ProteinsReceptors Nerve Growth FactorTropomyosin receptor kinase ATransfectionTropomyosin receptor kinase CHippocampusModels BiologicalPC12 CellsReceptor Nerve Growth FactorReceptor tyrosine kinaseLow-affinity nerve growth factor receptorAnimalsReceptor trkBNerve Growth FactorsPseudopodiaCloning MolecularNeuronsbiologyDose-Response Relationship Drugmusculoskeletal neural and ocular physiologyCell DifferentiationCell BiologyDendritesImmunohistochemistryDendritic filopodiaCell biologyProtein Structure TertiaryRatsnervous systemMicroscopy FluorescenceTrk receptorembryonic structuresNeurotrophin bindingCOS Cellsbiology.proteinsense organsNeurotrophinProtein BindingSignal TransductionJournal of cell science
researchProduct

Abnormal development of pacinian corpuscles in double trkB;trkC knockout mice.

2006

Pacinian corpuscles depend on either Aalpha or Abeta nerve fibers of the large- and intermediate-sized sensory neurons for the development and maintenance of the structural integrity. These neurons express TrkB and TrkC, two members of the family of signal transducing neurotrophin receptors, and mice lacking TrkB and TrkC lost specific neurons and the sensory corpuscles connected to them. The impact of single or double targeted mutations in trkB and trkC genes in the development of Pacinian corpuscles was investigated in 25-day-old mice using immunohistochemistry and ultrastructural techniques. Single mutations on trkB or trkC genes were without effect on the structure and S100 protein expr…

medicine.medical_specialtyanimal structuresTropomyosin receptor kinase BBiologyTropomyosin receptor kinase CS100 proteinMiceMicroscopy Electron TransmissionInternal medicinemedicineLow-affinity nerve growth factor receptorAnimalsReceptor trkBReceptor trkCReceptorMice Knockoutmusculoskeletal neural and ocular physiologyGeneral NeuroscienceImmunohistochemistryCell biologyMice Inbred C57BLEndocrinologynervous systemAnimals NewbornTrk receptorembryonic structuresKnockout mousebiology.proteinPacinian CorpusclesNeurotrophinNeuroscience letters
researchProduct